
Comune di Camerino

CRU_CENTRO RICERCA UNIVERSITARIA

Ordinanza del Capo Dipartimento della Protezione Civile n.489 / 2017 art.6

PROGETTO ESECUTIVO

arch. Alessandro Gabbianelli Collaboratori: arch. Alessandro Caioni

Progettazione del verde: arch. Sara Cipolletti

dott. Jacopo Di Antonio ing. Laura Gioiella ing. Fabio Micozzi arch. Fabio Scarpecci

R 0 2 (0)

relazione sui materiali

15.12.2018

CRU_Centro Ricerca Universitaria

Relazione sui materiali

PROGETTO DEFINITIVO

Rev. 01 - Dicembre 2018

Pag. 1 di 12

S	OMMAF	RIO	1
1	COI	NGLOMERATI CEMENTIZI	2
	1.1	Prescrizioni sui materiali	2
	1.2	Caratteristiche meccaniche	4
2	ACC	CIAIO PER ARMATURE	5
	2.1	Prescrizioni sui materiali	5
	2.2	Caratteristiche meccaniche	5
3	CAF	RPENTERIA METALLICA	6
	3.1	Prescrizioni sui materiali	6
	3.2	Caratteristiche meccaniche	8
4	Attr	ibuzione della Classe di esecuzione della struttura	10
	4.1	Classe di importanza	10
	4.2	Categoria di servizi	10
	4.3	Categoria di produzione	10
	4.4	Determinazione della Classe di esecuzione della struttura	10

D.	
R02	

CRU Centro Ricerca Universitaria

Relazione sui materiali

D	ᇚ	GET	$T \cap$		THAT	\square
г	\sim	GEI	10	VEF	11711	

Rev. 01 - Dicembre 2018

Pag. 2 di 12

Nella seguente relazione vengono illustrate le caratteristiche dei materiali usati in fase di progettazione e le relative procedure di controllo e prelievo in cantiere.

1 CONGLOMERATI CEMENTIZI

1.1 Prescrizioni sui materiali

I conglomerati cementizi da porre in opera saranno composti da:

- aggregato (UNI ENV 12620 e UNI EN 13055-1);
- acqua (UNI EN 1008: 2003);
- cemento (UNI EN 197);
- additivi (UNI EN 934-2) superfluidificanti e ritardanti, se occorrenti per garantire le prestazioni del calcestruzzo in base al tempo di trasporto;

ed avranno le seguenti caratteristiche:

- calcestruzzo per opere non armate (magrone di pulizia, sottofondazione e livellamento):

classe res. Rck C12/15 MPa

classe di esposizione X0 (UNI EN 206-1:2016)

contenuto minimo in cemento 150 kg/mc

calcestruzzo per fondazioni (pali, plinti, travi di fondazione e muri di contenimento):

classe res. Rck C25/30 MPa

classe di esposizione XC2 (UNI EN 206-1:2016)

copriferro minimo 30 mm

diametro max inerti 20 mm

rapporto max acqua/cemento 0.6

contenuto minimo in cemento 300 kg/mc

classe di consistenza slump S4

)_
R	?()2

CRU_Centro Ricerca Universitaria

Relazione sui materiali

Ρ	R	O	G	Ε.	T٦	ГО	D	E	F	IN	II	T	I۷	(
---	---	---	---	----	----	----	---	---	---	----	----	---	----	---

Rev. 01 - Dicembre 2018

Pag. 3 di 12

- calcestruzzo per pilastri, capitelli, travi in elevazione, solette, solai predalles:

classe res. Rck C28/35 MPa

classe di esposizione XC1 (UNI EN 206-1:2016)

copriferro minimo 30 mm

diametro max inerti 20 mm

rapporto max acqua/cemento 0.60

contenuto minimo in cemento 300 kg/mc

- calcestruzzo per solai hi-bond:

classe res. Rck C28/35 MPa

classe di esposizione XC1 (UNI EN 206-1:2016)

copriferro minimo 30 mm

diametro max inerti 15 mm

rapporto max acqua/cemento 0.60

contenuto minimo in cemento 300 kg/mc

classe di consistenza slump S4

calcestruzzo per sbalzi esterni e baggioli:

classe res. Rck C32/40 MPa

classe di esposizione XC4 (UNI EN 206-1:2016)

copriferro minimo 30 mm

diametro max inerti 20 mm

rapporto max acqua/cemento 0.50

contenuto minimo in cemento 340 kg/mc

classe di consistenza slump S4

- calcestruzzo per parete di contrasto della prova di spinta:

classe res. Rck C35/45 MPa

classe di esposizione XC2 (UNI EN 206-1:2016)

D.	
R02	

CRU Centro Ricerca Universitaria

Relazione sui materiali

PR	ROGE	ΕΤΤΟ	DEF	INITI	VC

Rev. 01 - Dicembre 2018

Pag. 4 di 12

diametro max inerti 20 mm

rapporto max acqua/cemento 0.60

contenuto minimo in cemento 300 kg/mc

classe di consistenza slump S4

Trattandosi di manufatto caratterizzato da un quantitativo di miscela omogenea che richiede l'impiego di più di 1500 m3 di miscela omogenea, è obbligatorio il controllo di accettazione da effettuare sui getti di calcestruzzo che sarà di **tipo B**. Il controllo è riferito ad una definita miscela omogenea e va eseguito con frequenza non minore di un controllo ogni 1500 m3 di calcestruzzo. Per ogni giorno di getto di miscela omogenea va effettuato almeno un prelievo, e complessivamente almeno 15 prelievi sui 1500 m3.

Per quanto non indicato si rimanda al cap.11.2 del DM 2018

1.2 Caratteristiche meccaniche

La resistenza di calcolo a compressione, f_{cd} vale:

$$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_C$$

dove:

- α_{cc} = 0.85 è il coefficiente riduttivo per le resistenze di lunga durata;
- γ_C = 1.5 è il coefficiente parziale di sicurezza relativo al calcestruzzo;
- f_{ck} è la resistenza caratteristica cilindrica a compressione del calcestruzzo a 28 giorni.

Per quanto non indicato si rimanda al cap.4.1 del DM 2018

CRU_Centro Ricerca Universitaria

Relazione sui materiali

PROGETTO DEFINITIVO

Rev. 01 - Dicembre 2018

Pag. 5 di 12

2 ACCIAIO PER ARMATURE

2.1 Prescrizioni sui materiali

Le armature da porre in opera non dovranno presentare tracce di ossidazione, corrosione e di qualsiasi altra sostanza che possa ridurne l'aderenza al conglomerato; dovranno inoltre presentare sezione integra e priva di qualsiasi difetto.

Si utilizzeranno barre ad aderenza migliorata tipo B450C controllato in stabilimento conforme alle UNI EN ISO 15630-1:2010 (accertamento proprietà meccaniche), aventi le seguenti caratteristiche:

- tensione caratteristica di snervamento $f_{sk} \ge f_{y,nom} = 450 \text{ MPa}$

tensione caratteristica di rottura
 f_{tk} ≥ f_{t,nom} = 540 MPa

allungamento percentuale
 Agt,k ≥ 7,5 %

modulo elastico
E_s = 210.000 MPa

Per quanto non indicato si rimanda al cap.11.3.2 del DM 2018.

Le reti elettrosaldate da porre in opera non dovranno presentare tracce di ossidazione, corrosione e di qualsiasi altra sostanza che possa ridurne l'aderenza al conglomerato; dovranno inoltre presentare sezione integra e priva di qualsiasi difetto. Si utilizzeranno reti tipo B450A in conformità alla UNI EN ISO 15630-1:2010 e al cap.11.3.2 del DM 2018.

2.2 Caratteristiche meccaniche

La resistenza di calcolo dell'acciaio da armatura f_{yd} è riferita alla tensione di snervamento ed il suo valore è dato da:

$$f_{yd} = f_{yk}/\gamma_S$$

dove:

- γs =1.15 è il coefficiente parziale di sicurezza relativo all'acciaio;
- f_{yk} per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio.

Per quanto non indicato si rimanda al cap.4.1 del DM 2018

D.
R02

CRU Centro Ricerca Universitaria

Relazione sui materiali

P	R	O	G	Ε.	ГΤ	0	D	Ε	F	IN	II.	TI	۷	C
---	---	---	---	----	----	---	---	---	---	----	-----	----	---	---

Rev. 01 - Dicembre 2018

Pag. 6 di 12

3 CARPENTERIA METALLICA

3.1 Prescrizioni sui materiali

Carpenteria metallica

La carpenteria metallica sarà realizzata in acciaio conforme alle UNI EN 10025 per i prodotti piani e lunghi laminati a caldo, UNI EN 10210 per i profili cavi senza saldatura, UNI EN 10219 per i profili cavi saldati e UNI EN 10346 per lamiera zincata piegata a freddo.

Si adottano i seguenti tipi di acciaio:

Pilastri, controventi, travi e orditura secondaria
 S355(H) J0

Lamiera zincata piegata a freddo S280GD+Z

Piastra ortotropa (acciaio corten)
 S355K2W+N (EN 10025-5)

La durabilità è assicurata da cicli protettivi di verniciatura per i componenti principali e da zincatura e successiva verniciatura per gli elementi esposti all'esterno e realizzati con componenti di modesto spessore, quali, ad esempio, i parapetti della copertura e le scale di servizio esterne.

Per quanto riguarda la verniciatura, si fa riferimento alle seguenti classi di corrosività (UNI EN-12944-1):

Elementi interni C1 Classe di corrosività molto bassa

(Edifici riscaldati con atmosfera pulita)

Elementi esterni C3 Classe di corrosività media

(Ambienti con modesto inquinamento)

È richiesta una classe di durabilità alta (H) (UNI EN 12944-1)

La preparazione della superficie e il ciclo di verniciatura verrà definito in coerenza con le classi prestazionali scelte (C1-H per le parti interne e C3-H per le parti esterne) facendo riferimento alle norme UNI EN 12944-4 (preparazione delle superfici), e scegliendo il ciclo di verniciatura tra quelli proposti in UNI EN 12944-5 (sistemi di verniciatura). Si farà inoltre

D.

CRU Centro Ricerca Universitaria

Relazione sui materiali

PROGETTO DEFIN	OVITIN
----------------	--------

Rev. 01 - Dicembre 2018

Pag. 7 di 12

riferimento a UNI EN 12944-6 (prove di laboratorio per le prestazioni) e UNI EN 12944-7 (esecuzione).

Per le parti in esterno si provvederà in officina all'eliminazione degli spigoli vivi e alla regolarizzazione delle saldature.

Per quanto riguarda la zincatura, si fa riferimento alle seguenti classi di esposizione (UNI EN-14713-1):

Elementi esterni

C3

mediamente aggressivo

(Zona temperata con valori medi di inquinamento)

Per la preparazione degli elementi e la definizione del processo di immersione a caldo, si farà riferimento alle norme UNI EN 14713-1 (principi generali) e UNI EN 14713-2 (immersione a caldo).

Saldature

I procedimenti di saldatura e i materiali di apporto devono essere conformi a quanto richiesto ai cap. 11.3.4 delle NTC 2018 ed alle norme UNI EN ISO 2560:2010 (UNI EN ISO 4063:2011).

Collegamenti bullonati

- Viti classe 8.8 (UNI EN ISO 898-1:2013, UNI EN 14399-3:2015);
- Dadi classe 8 (UNI EN ISO 898-2:2012, UNI EN 14399-3:2015);
- Barre filettate per tirafondi (UNI EN ISO 898-1:2013).

I collegamenti dovranno essere realizzati mediante unioni ad attrito adottando le coppie di serraggio indicate negli elaborati grafici, previa opportuna preparazione delle superfici. Per l'esecuzione ed i controlli si rimanda a quanto prescritto dal cap.11.3.4 NTC 2018 e alle norme UNI EN 14399-1/2/3/5:2015.

I bulloni dovranno essere montati con una rosetta sotto la testa della vite e una rosetta sotto il dado e dovranno essere contrassegnati con le indicazioni del produttore e la classe di

D.	CRU_Centro Ricerca Universitaria
R02	Relazione sui materiali

PROGETTO DEFINITIVO
Rev. 01 - Dicembre 2018
Pag. 8 di 12

resistenza. I bulloni disposti verticalmente avranno la testa della vite rivolta verso l'alto e il dado verso il basso.

Per quanto non indicato si rimanda al cap.11.3 del DM 2018

I pioli tipo "Nelson" per la connessione tra le travi in carpenteria metallica e il getto di completamento devono rispondere ai requisiti della norma UNI EN ISO 14555:2017. Per tali connettori si

Si adotta il seguente tipo di acciaio:

Pioli connettori

S235 J2 + C450.

Per quanto non indicato si rimanda al cap.11.3.4 del DM 2018

3.2 Caratteristiche meccaniche

La resistenza di calcolo delle membrature in carpenteria metallica Rd si pone nella forma:

 $R_d = R_k/\gamma_M$

dove:

- R_k è il valore caratteristico della resistenza trazione, compressione, flessione, taglio e torsione - della membratura, determinata dai valori caratteristici della resistenza dei materiali f_{yk} e dalle caratteristiche geometriche degli elementi strutturali, dipendenti dalla classe della sezione;
- γ_M è il fattore parziale globale relativo al modello di resistenza adottato.

Tabella 3-1 Coefficienti di sicurezza per la resistenza delle membrature e la stabilità

Resistenza delle Sezioni di Classe 1-2-3-4	$\gamma_{M0} = 1.05$
Resistenza all'instabilità delle membrature	γ _{M1} = 1.05
Resistenza all'instabilità delle membrature di ponti stradali e ferroviari	$\gamma_{M1} = 1.10$
Resistenza, nei riguardi della frattura, delle sezioni tese (indebolite dai fori)	γ _{M2} = 1.25

Modulo elastico

D.
RN2

CRU_Centro Ricerca Universitaria

Relazione sui materiali

PROGETTO	DEFINITIVO
-----------------	-------------------

Rev. 01 - Dicembre 2018

Pag. 9 di 12

Modulo elasticità trasversale
 G = 80770
 MPa

- Coefficiente dilatazione termica α = 12x10⁻⁶ °C⁻¹

– Densità ρ = 7850 kg/m³

Per quanto non indicato si rimanda al cap.4.2 del DM 2018

D.	_
R02	2

CRU_Centro Ricerca Universitaria

Relazione sui materiali

PROGETTO DEFINITIVO
Rev. 01 - Dicembre 2018

Pag. 10 di 12

4 ATTRIBUZIONE DELLA CLASSE DI ESECUZIONE DELLA STRUTTURA

Conformemente a quanto previsto dalla norma UNI EN 1090:2, la struttura oggetto di studio presenta le seguenti caratteristiche:

4.1 Classe di importanza

Stando a quanto stabilito dalla norma EN 1990:2002, nell'appendice B, la struttura oggetto di studio risulta avere classe di importanza pari a **CC2** e cioè: 'Opere ordinarie, ponti, opere infrastrutturali e dighe, di dimensioni contenute, o di importanza normale'

4.2 Categoria di servizi

Stando a quanto stabilito dalla norma EN 1090, nel prospetto B.1, la struttura oggetto di studio risulta avere categoria di servizi pari a **SC2** e cioè: 'Strutture e componenti con connessioni progettate per azioni sismiche nelle regioni con alta attività sismica e in DCM e DCH'

4.3 Categoria di produzione

Stando a quanto stabilito dalla norma EN 1090, nel prospetto B.2, la struttura oggetto di studio risulta avere categoria di produzione pari a **PC2** e cioè: 'Componenti saldati realizzati da prodotti di acciaio di classe S355 e maggiore'

4.4 Determinazione della Classe di esecuzione della struttura

Classi di importanza		CC1		CC2		CC3	
Categoria di servizio		SC1	SC2	SC1	SC2	SC1	SC2
Categorie di produzione	PC1	EXC1	EXC2	EXC2	EXC3	EXC3	EXC3
	PC2	EXC2	EXC2	EXC2	EXC3	EXC3	EXC4

Stando a quanto stabilito dalla norma EN 1090, nel prospetto B.3 (sotto riportato), la struttura oggetto di studio, in base a quanto sin'ora esposto, risulta avere Classe di esecuzione **'EXC3'** Si riportano nel seguito tutti i **requisiti**, richiesti dalla EN 1090-2 al prospetto A.3, relativi alla classe esecuzione **'EXC3'**

CRU_Centro Ricerca Universitaria

Relazione sui materiali

PROGETTO DEFINITIVO

Rev. 01 - Dicembre 2018

Pag. 11 di 12

Punto	Requisito
4 - Specifiche e documentazione	
4.2 Documentazione del costruttore	
4.2.1 - Documentazione della qualità	SI
5 - Prodotti costituenti	
5.2 Identificazione, documenti di contro	llo e tracciabilità
Documento di controllo	Vedere prospetto 1
Tracciabilità	Si (completa)
Marcatura	SI
5.3 Prodotti strutturali di acciaio	
5.3.2 Tolleranze di spessore	Classe A
5.3.3 Finiture superficiali	Condizioni più stringenti se specificate
5.3.4 Proprietà particolari	Discontinuità interne di classe di qualità S1 per giunti a croce saldati
6 - Preparazione ed assemblaggio	' ' '
6.2 Identificazione	Elementi finiti/Certificati di controllo
6.4 Taglio	, , , , , , , , , , , , , , , , , , , ,
6.4.3 Taglio termico	EN ISO 9013
6.5 Formatura	
6.5.3 Raddrizzatura a fiamma	Deve essere sviluppata idonea procedura
6.6 Foratura	
6.6.3 Esecuzione dei fori	Punzonamento + alesatura
6.7 Fresature	Raggio minimo 5 mm
6.9 Assemblaggio	Deriva: Allungamento funzionale tolleranza classe 2
7 - Saldature	
7.1 Generalità	EN ISO 3834-2
	a e del personale che esegue la saldatura
7.4.1 Qualifica delle procedure di	
saldatura	Vedere prospetti 12 e 13
7.4.2 Qualifica dei saldatori e degli	Saldatori: EN 287-1
operatori	Operatori: EN 1418
7.4.3 Coordinamento di saldatura	Conoscenze tecniche secondo i prospetti 14 o 15
7.4.1 Preparazione del giunto	Non è ammessa la prefabbricazione dei primers
7.5.6 Attacchi temporanei	L'utilizzo deve essere specificato.
· ·	Fresatura e bulinatura non sono ammesse
7.5.7 Punti di saldatura	Procedura di saldatura qualificata
7.5.9 Saldatura di testa	Pezzi di flusso e riflusso
7.5.9.1 Generalità	Sostegno permanente continuo
7.5.9.2 Saldature su un solo lato	· .
7.5.17 Esecuzione di saldatura	EN ICO 5047
7.6 Criteri di accettazione	EN ISO 5817
9 - Montaggio	
9.6 Montaggio e lavoro in cantiere	
9.6.3 Movimentazione e stoccaggio in	Procedura normalizzata documentata
cantiere	
9.6.5.3 Incastro e allineamento	Spessori fissati mediante saldatura soggetta ai requisiti del punto 7
12 - Ispezione, prova e correzione	
12.4.2 Controllo dopo la saldatura	
12.4.2.2 Scopo dei controlli	CND: vedere prospetto 24
12.4.2.5 Correzione delle saldature	Secondo WPQ
12.4.4 Prove di produzione	Se specificate

CRU_Centro Ricerca Universitaria

Relazione sui materiali

PROGETTO DEFINITIVO

Rev. 01 - Dicembre 2018

Pag. 12 di 12

12.5.2 Controllo di collegamenti bullonati precaricati	Come segue			
12.5.2.2 Prima del serraggio	Controllo della procedura di serraggio			
	1° step di serraggio			
12.5.2.3 Durante e dopo il serraggio	2° step di serraggio			
	Sequenziale di tipo A			
	Localizzazione del lotto di assemblaggio			
12.5.2.4 Metodo di coppia	Controllo della procedura di serraggio (Ogni lotto			
	di bulloni) 2° step di serraggio			
	1° step di serraggio			
12.5.2.5 Metodo combinato	Controllo della marcatura			
	2° step di serraggio			
12.5.3.1 Ispezione, collaudo e	Prove ring coguenziale di tine A			
riparazione di rivetti a caldo	Prova ring sequenziale di tipo A			
12.7.3.1 Indagine dellaposizione geometrica dei nodi di connessione	Registrazioni delle indagini			